Właściwości Fizyczne i chemiczne węży teflonowych

Węże z PTFE teflonu charakterystyka i zastosowanie.

https://domtechniczny24.pl/w%C4%99%C5%BCe-techniczne-teflonowe-%2B260c.html


Politetrafluoroetylen (PTFE, nazwy handlowe: tarflen, teflon, fluon) jest materiałem znanym od ponad sześćdziesięciu lat. Ze względu na wiele unikalnych właściwości znajduje zastosowanie we wszystkich dziedzinach przemysłu,
w tym do wytwarzania elastycznych węży o różnorodnej budowie i zastosowaniu.
Podstawowe własności PTFE:

Bardzo dobra odporność chemiczna. Nie rozpuszcza się i nie pęcznieje w żadnym ze znanych rozpuszczalników, wytrzymuje działanie stężonych kwasów i zasad. Jedynie kilka bardzo rzadkich substancji chemicznych
(fluor, wrzące metale alkaliczne, trójfluorek chloru i dwufluorek tlenu) oddziaływują na PTFE.

Szeroki zakres odporności temperaturowej. PTFE pozostaje elastyczny nawet w temperaturze ciekłego helu
(-269°C). Temperatura topnienia fazy krystalicznej wynosi +327°C, a w temperaturze +415°C następuje rozkład PTFE. Użytkowy zakres temperatur dla węży wykonanych z PTFE zależny jest od ich konstrukcji i mieści się zwykle w przedziale od -70°C do +260°C (od temperatury +130°C następuje spadek parametrów ciśnieniowych i mechanicznych).

Odporność na starzenie i warunki atmosferyczne. PTFE charakteryzuje się niską chłonnością wody, jest całkowicie odporny na ozon, tlen, światło i promieniowanie ultrafioletowe. Próbki podane przez okres kilkudziesięciu lat różnym warunkom klimatycznym nie wykazały żadnych zmian własności PTFE.
PTFE ma bardzo niski współczynnik tarcia (0,02 do 0,2) i niską wartość energii powierzchniowej. Dlatego węże wykonane z PTFE charakteryzują się własnościami samoczyszczącymi (substancje nie przylegają do ścianek węża), co zapewnia wysoki stopień higieny.

Dobre własności elektryczne, wysoka oporność,

Właściwości samogasnące,

Umiarkowana odporność na ścieranie.
Inne materiały zbliżone do PTFE.
Materiałami stosowanymi do produkcji węży są również kopolimery PTFE o dużej odporności chemicznej i tem – peraturowej, ale o odmiennych niektórych innych cechach (podwyższonej wytrzymałości mechanicznej, lepszych własnościach przetwórczych):

FEP (Teflon FEP, DuPont),

PFA, MFA (Teflon PFA, DuPont),

ETFE (Tefzel, DuPont),

ECTFE (Halar)


Wytwarzanie i konstrukcja węży z PTFE.
Ze względu na wysoką lepkość nawet w temperaturach zbliżonych do temperatury rozpadu termicznego (+415°C) węże z PTFE wytwarzane są specjalnymi metodami poprzez wytłaczanie mieszaniny środka smarnego (nafty) i proszku PTFE.
Pod względem konstrukcji węże z PTFE podzielić można na:

Niewzmocnione węże gładkościenne i karbowane bez oplotu. Stosowane do niskich ciśnień. Półprzezroczysta ścianka PTFE pozwala na wizualną kontrolę przepływu medium.

Węże gładkościenne wzmocnione zewnętrznym pojedynczym lub podwójnym oplotem wykonanym najczęściej ze stali nierdzewnej. Stosowane praktycznie do wszelkich mediów: chemikaliów, gazów, pary wodnej, olejów, smarów, paliw, farb, klejów, substancji spożywczych we wszystkich gałęziach przemysłu. Stosunkowo wysokie ciśnienia robocze (do około 400 bar) w połączeniu z własnościami teflonu czynią te węże niezastąpionym, uniwersalnym rozwiązaniem we współczesnej technologii przemysłowej.

Węże o karbowanej ściance PTFE, wzmocnione zewnętrznymi oplotami wykonanymi ze stali nierdzewnej lub innych materiałów. Niekiedy wzmocnione dodatkową spiralą metalową pomiędzy PTFE a oplotem. Wykony- wane w różnych rozwiązaniach konstrukcyjnych, charakteryzują się niższym ciśnieniem roboczym od węży gładkościennych, ale przewyższają je znacznie elastycznością.

Węże o gładkiej, wytłaczanej warstwie wewnętrznej PTFE z nałożonym wzmocnieniem z kordu tekstylnego i spiralą metalową oraz zewnętrzną warstwą gumową. Wszystkie warstwy są zwulkanizowane i trwale złączone z wewnętrzną wykładziną PTFE – jak w przypadku konwencjonalnego węża gumowego. Stosowane są przede wszystkim w przemyśle chemicznym.

Buława wibracyjna Hervisa

Cześć,
Buławy wibracyjne czyli (wibratory do betonu) to specjalistyczne narzędzia wykorzystywane do zagęszczania mieszanki betonowej. Dzięki wibracjom eliminuje się powietrze , nadmiar wody a mieszanka betonowa dokładnie wypełnia wszystkie zakamarki. Dzięki temu zwartość betonu jest bardziej jednolita, pozbawiona rozwarstwień a co za tym idzie wzmacnia się jego wytrzymałość.
Wyróżniamy buławy o napędzie Spalinowym, pneumatycznym, elektronicznym i mechanicznym.

Zacznę od końca, Wibratory mechaniczne. To małe mobilne maszyny składające się z napędu i buławy wibracyjnej.

Ten rodzaj wibratorów, doskonale sprawdzi się, gdy zależy nam na większej mobilności. Są one lżejsze i wygodniejsze w porównaniu z buławami elektronicznymi. Wibratory mechaniczne to dobry wybór w wypadku robót na małych budowach:
Domki jednorodzinne, fundamenty i stropy budynków gospodarczych, itd.
Zasada działania jest prosta. Napęd generuje ruch obrotowy, przekazywany przez wałek giętki do buławy, buława ma asynetryczną – mimośrodową konstrukcję, która w czasie obrotu generuje drgania.

Buława jest wypinana tak że można łatwo po pracy ją umyć zwinąć i zapakować do samochodu. Zapinka jest w kształcie sprężystego pierścienia i z praktyki wiemy że trzeba upewnić się że jest dobrze wpięta, albo zablokować śrubką M5 * 50 plus 3 nakrętki.

Buława wibracyjna Hervista CMP 42/4


Uwaga, w czasie pracy, na skutek tarcia generuje się temperatura w wałku, przede wszystkim w miejscach większego zgięcia, należy więc dbać aby jak największa część wałka była zanurzona- chłodzona w betonie.

W naszym sklepie można zakupić buławy wibracyjne firmy HERVISA S.A

HERVISA S.A. to renomowany hiszpański producent buław wibracyjnych do betonu i napędów do nich stosowanych. Przedsiębiorstwo HERVISA powstało w 1984 roku w Barcelonie i od samego początku skierowało swe produkty do profesjonalnych odbiorców, bo innych to nie obchodzi :).
Na przestrzeni lat firma rozwinęła produkcję i rozszerzyła swoją działalność na całą Europę. Obecnie firma Hervisa posiada certyfikat jakości ISO 9001: 2001, który po odnowieniu w 2009 roku potwierdza ciągle wysoką klasę i jakość produktów.

Produkty marki HERVISA dzielą się na kilka grup:

buławy mechaniczne AM do betonu, na prąd 230 V i 50 Hz

Kolanka nyplowe ze stali nierdewnej 316 – opis i zastosowanie stali 316

Witam

Czym jest stal nierdzewna Gatunek 316 jest drugą najczęściej spotykaną formą stali nierdzewnej. Ma prawie takie same właściwości fizyczne i mechaniczne jak stal nierdzewna 304 i zawiera podobny skład materiału. Podstawową różnicą jest to, że stal nierdzewna 316 zawiera około 2 do 3 procent molibdenu.

Włączenie molibdenu (Mo) jest głównym czynnikiem poprawiającym odporność na korozję w porównaniu z odpowiednikiem stali nierdzewnej 304.Dodatek zwiększa odporność na korozję, szczególnie przed chlorkami i innymi rozpuszczalnikami przemysłowymi, szczególności dobrze radzi sobie z odpornością na korozję wżerową i szczelinową w środowiskach o ciepłym chlorku.

Cechy wspólne 316 i 316L

Kolanko nierdzewne nyplowe 45 szt 1/8

316 i 316L wykazują lepszą odporność na korozję i są mocniejsze w podwyższonych temperaturach w stosunku do gat. 304.

Są one również nieutwardzalne w wyniku obróbki cieplnej i można je łatwo formować i ciągnąć.Wyżarzanie stali nierdzewnych 316 i 316L wymaga nagrzewania w temperaturze 1038-1149 ° C przed szybkim hartowaniem.

Różnice między 316 i 316L

Stal nierdzewna 316 zawiera więcej węgla niż 316L. Łatwo to zapamiętać, ponieważ L oznacza „niski”. Koszt obydwu gatunków jest bardzo podobny, a oba są trwałe, odporne na korozję i stanowią dobry wybór w sytuacjach wymagających dużego obciążenia.

316L jest jednak lepszym wyborem w przypadku projektu wymagającego spawania. To dlatego, że 316 jest bardziej podatny na zerwanie zgrzewu niż 316L (chociaż 316 można wyżarzać, aby przeciwdziałać rozpadowi spoiny). 316L to również doskonała stal nierdzewna do zastosowań w wysokich temperaturach i wysokich temperaturach korozji, dlatego jest tak popularna w projektach budowlanych i morskich.

Jakie są zalety stali typu 316?

Stal typu 316 jest austenityczną chromowo – niklową stalą nierdzewną, która zawiera od dwóch do trzech procent molibdenu.Zawartość molibdenu zwiększa odporność na korozję , poprawia odporność na wżery w roztworach jonów chlorkowych i zwiększa wytrzymałość w wysokich temperaturach.

Stal nierdzewna gatunku 316 jest szczególnie skuteczna w środowisku kwaśnym. Ten gatunek stali skutecznie chroni przed korozją wywołaną przez kwasy siarkowy, chlorowodorowy, octowy, mrówkowy i winowy, a także kwaśne siarczany i chlorki alkaliczne.

Gdzie używana jest stal typu 316?

Typowe zastosowania stali nierdzewnej typu 316 obejmują konstrukcję kolektorów wydechowych, części pieców, wymienników ciepła, części silników odrzutowych, sprzętu farmaceutycznego i fotograficznego, części zaworów i pomp, sprzętu do przetwarzania chemicznego, zbiorników, parowników, a także masy włóknistej, papieru i urządzenia do obróbki tekstyliów i wszelkie części narażone na działanie środowiska morskiego.

Jakie są zalety stali 316L?

Stal nierdzewna typu 316L jest niskowęglową wersją stopu 316. . Niższa zawartość węgla w 316L minimalizuje szkodliwe wytrącanie węglika w wyniku spawania. W związku z tym 316L jest wykorzystywany do spawania, gdy wymagane jest zapewnienie maksymalnej odporności na korozję .
316 ma dobrą odporność na utlenianie przy przerywanej pracy do 870 ° C i ciągłej pracy do 925 ° C. Jednak ciągłe stosowanie w temperaturze 425-860 ° C nie jest zalecane, jeśli wymagana jest odporność na korozję w wodzie. W tym przypadku zalecany jest 316L ze względu na jego odporność na wytrącanie z węglika.

Tolerancja temperatury stali nierdzewnej klasy 316 jest zbliżona do tolerancji stali klasy 304, która jest nieco niższa. Dla stali nierdzewnej klasy 316, zakres topnienia wynosi 1,371 ° C – 1 399 ° C.

Zastosowanie stali nierdzewnej typu 316 i 316L:

Ze względu na doskonałą odporność na korozję i utlenianie, dobre właściwości mechaniczne i podatność na przetarcie, stal z gatunku 316 ma zastosowanie w wielu sektorach przemysłu (w przemyśle chemicznym, spożywczym, papierniczym, wydobywczym, farmaceutycznym i petrochemicznym).

Stal nierdzewna 316 jest powszechnie stosowana w środowiskach o dużym zasoleniu, takich jak obszary przybrzeżne i obszary zewnętrzne, gdzie sole przeciwoblodzeniowe są powszechne. Ze względu na swoją niereaktywność stal nierdzewna 316 jest również wykorzystywana do produkcji medycznych narzędzi chirurgicznych.

Zawór ręczny 5/3 ze sprężyną

Przykład połączenia siłownika z zaworem ręcznym ze sprężyną. W położeniu środkowym, czyli jak puścimy dźwignię zawór jest obustronnie zamknięty.

Na wylocie powietrza z siłownika wkręcony został zawór dławiący. Można dzięki temu regulować prędkość pracy, aby siłownik nie wysuwał się zbyt gwałtownie. Zawory dławiące działają w jednym kierunku z tego powodu zależnie od tego jaki mamy zawór montujemy go albo na wlocie albo na wylocie.

Zawór ręczny z dzwignią 5223C ML9 5/3

Siłowniki pneumatyczne

Na co zwrócić uwagę wybierając siłownik pneumatyczny ?

Skok – parametry określające wielkości wysuwu i powrotu siłownika
rodzaj siłownika tj. czy ma być jednostronnego czy dwustronnego działania
wykonanie materiałowe i techniczne – szeroko rozumiane elementy składające się na dany model siłownika, rodzaj użytych materiałów profili, tłoczyska, temperatur pracy, otoczenia  itd.
uszczelnienia – w zależności od przeznaczenia mogą to być uszczelnienia poliuretanowe, viton, teflonowe itd.
możliwość regeneracji –łatwość demontażu siłownika
uniwersalność – jedynie siłowniki znormalizowane gwarantują dużą elastyczność i kompatybilność z siłownikami innych marek.
zgodność z normami jakościowymi i rynkowymi np. ISO – dają pewność jakości produktu oraz poszczególnych jego elementów.
wiarygodność producenta siłowników – wyrażana poprzez realizację zleceń dedykowanych – indywidualnych, szybkość realizacji zamówienia, dostawę, kompleksowe podejście (serwis, możliwość dokupienia osprzętu),opinię i czas na rynku itd.

Siła w siłownikach pneumatycznych zależy od ciśnienia i średnicy tłoka.

Uszczelnienia tłoków i tłoczysk stosowanych w pneumatyce

Uszczelnienia poliuretanowe (PU) zarówno te symetryczne jak i asymetryczne są wykorzystywane przy uszczelnianiu tłoków, gdyż odznaczają się dużą wytrzymałością eksploatacyjną.

W związku z dużym wyborem materiałów na rynku uszczelnień pneumatycznych, dobierane są one pod kątem warunków pracy w danej aplikacji. Proponując konkretne rozwiązanie, konieczna jest analiza temperatury otoczenia, częstotliwości pracy oraz prędkości z jaką przesuwa się tłok siłownika. Dzięki uwzględnieniu wszystkich parametrów pracy oraz wykonaniu kanałków pod uszczelkę o odpowiedniej tolerancji i chropowatości, klient otrzymuje produkt, który może bezproblemowo pracować przez długi okres czasu.

Uszczelnienie poliuretanowe w siłowniku sprawia, że wzrasta żywotność samego urządzenia oraz niskie tarcie w trakcie jego ruchu. Siłowniki pneumatyczne posiadające uszczelki poliuretanowe wykazują odporność na gazy i media wymagające takie jak propan, butan, benzynę. Poliuretan to materiał stosowany w większości aplikacji. Posiada najlepszą odporność na ścieranie, co przekłada się na długotrwałą prace bez konieczności smarowania powietrza.

Czasami wykorzystuje się dodatkowo krawędzie uszczelniające. Zintegrowany magnes zapewnia wysoki poziom precyzji pozycjonowania. Uszczelki w pneumatyce mają charakterystycznie zaokrąglony profil uszczelniający oraz elastyczną część ośrodkową. Uszczelnienie tłoczysk pneumatycznych odbywa się poprzez wykorzystanie uszczelek w tym także wzmocnionych np. komponentem metalowym, zgarniającym itp. oraz uszczelnień wyciszających, tzw. tłumiących drgania.

O-ring – często wykorzystywane uszczelki kołowe w konstrukcjach profilowych siłowników. Materiał z jakiego wykonano uszczelnienie jest zazwyczaj elastomerowy w tym najpopularniejsze to NBR, SBR, ACM czy IIR.

Uszczelnienie NBR (kauczuk butadienowo-akrylonitrylowy) stosowane jest w siłownikach, które narażone są kontakt ze stężeniem pary wodnej. NBR to materiał odporny na wiele środków chemicznych, charakteryzujący się jednak słabą odpornością na ścieranie, co przy występowaniu powietrza niesmarowanego skutkuje nieszczelnością siłownika po stosunkowo krótkim czasie.

Produkując siłowniki przy doborze o-ringów szczególną uwagę zwracamy na twardość materiału oraz zakres temperatury pracy. O-ringi działają samoczynnie oraz dwustronnie, zapewniając dużą siłę uszczelniającą. Instalacja tego typu uszczelnień ma miejsce w tłoczyskach siłowników narażonych na kontakt z olejami, cieczami hydraulicznymi, niekiedy również z mediami wymagającymi, agresywnymi chemicznie.

Viton to bardzo mocny typ uszczelnienia, dedykowany siłownikom podczas pracy w wysokich temperaturach i nie tylko. Viton jest odporny na smary silikonowe, mineralne itd, czynniki atmosferyczne czy węglowodory.

Dostawa węży PU transparentnych

Węże poliuretanowe z kalibrowaną średnicą zewętrzną do złączek wtykowych. Węże w średnicach 6mm, 8mm, 10mm, 12mm.

Sprzedawane na metry lub rolki ( wtedy dajemy cenę niższą za opakowanie zbiorcze)

Przewody transparentne mają te same parametry wytrzymałościowe co niebieskie i inne barwione, ich zaletą jest to, że można obserwować tłoczone medium.

Wąż PU transparentny stosuje się do powietrza, wody, gazów obojętnych, cieczy nieagresywnych

Frezarki ręczne Boscha i nie tylko

Cześć
Podstawowe informacje o frezowaniu drewna frezarkami górnowrzecionowymi.

Frezowanie obok procesu toczenia i wiercenia jest jedną z najpopularniejszych odmian obróbki wiórowej. Cel tej operacji to przede wszystkim obróbka powierzchni płaskich (płaszczyzn), rowków, powierzchni kształtowych, wpustowych i kopiowaniu zarysów.

Frezowanie wykonywane jest obrotowymi narzędziami wieloostrzowymi (frezami) na maszynach nazywanych frezarkami.
W większości odmian frezowania ruch roboczy jest prostoliniowy lub kszywoliniowy – wykonuje je przedmiot obrabiany w wypadku frezarek stacjonarnych dolnowrzecionowych lub maszyna w przypadku frezarek górnowrzecionowych. Te ostatnie będą celem niniejszego artykułu.
Z kolei ruch główny (obrotowy) wykonywany jest przez frez kształtowy.

Operacje technologiczne uzyskiwane na frezarkach, zależne są od rodzaju użytego frezu. I tak mamy frezowanie obwodowe, w którym frez obrabia ostrzami leżącymi równolegle do osi wrzeciona i frezowanie czołowe, w którym frez skrawa zębami położonymi prostopadle do osi wrzeciona.  W związku z tym mamy frezy boczne i wiercąco frezujące.
 Ze względu na bezpieczeństwo na frezarkach górnowrzecionowych praca odbywa się jedynie przeciwbieżnie (kierunek ruchu posuwowego jest przeciwny do kierunku ruchu roboczego). 

W ciągu przeciwbieżnego frezowania drewna, lepiej kontrolujemy prowadzenie materiału po łożysku lub wzdłuż prowadnicy. W konsekwencji uzyskujemy lepszą jakość powierzchni i minimalizujemy niebezpieczeństwo odbicia freza.

Najczęstrzą operacją jest krawędziowanie. Zależnie od kształtu freza uzyskujemy różne powierzchnie: wypukłe i wklęsłe łukowe, fazowanie 45o, kształtowe ozdobne. Frezy do krawędzi wyposażone są najczęściej łożysko prowadzące, które możemy prowadzić zarazem po krawędziach prostych jak i krzywoliniowych. Jedną z form krawędziowania jest potrzeba otrzymania estetycznego wyglądu połączenia elementów konstrukcji łączonych montowanych prostopadle i równolegle. Jeśli krawędzie pozostawimy „na ostro” to po złączeniu elementów możemy zauważyć niedokładności pasowania.                  
Rozwiązaniem jest wykonanie delikatnych zaokrągleń krawędzi. W rezultacie uzyskamy ładne połączenie.

Wielkość fazowania zależy od głębokości wysunięcia freza.

Do innych czynności należą:

  • frezowanie rowków w tym wypadku stosujemy frez palcowy 8 mm, 10 mm i większe.
  • wyrównanie po okleinowaniu stosujemy frez do wyrównania oklein z dużym łożyskiem
  • wykonywanie połączeń typu T. Frez do połączeń składa się z trzpienia, dwóch frezów tarczowych, łożyska oporowego i nakrętki blokującej. Większość frezów opiera się o 1 lub 2 krawędzie skrawające wykonane z węglików spiekanych o przeróżnych kształtach, rzadziej z stali HSS.
    Ze względu na konstrukcję freza z płytkami HM, mamy frezy z płytkami wlutowanymi na stałe i frezy HM z płytkami wymiennymi.
    Te ostatnie mają zastosowanie w produkcji średnio i wieloseryjnej i charakteryzują się wysoką żywotnością. Zamienne płytki są zazwyczaj wieloostrzowe, czyli jeżeli krawędź skrawająca jest tępa, obracamy płytkę i możemy pracować dalej.

Takie rozwiązanie zapewnia długą żywotność frezów. Wynika to z prostego faktu. Drewno jest słabym przewodnikiem ciepła a więc w niewielkim stopniu pochłania ciepło powstające w trakcie skrawania. Dochodzi podczas tego typu obróbki do sporego rozgrzania się ostrzy skrawających. Co więcej częstym przypadkiem jest palenie drewna.

Omówiony fakt wpływa na parametry skrawania:

  • należy stosować jedynie ostre narzędzia.
  • nastawiać możliwie duże prędkości skrawania i szybki posuw.
  • stosować odsysanie wiórów przez podłączenie odkurzacza, spowoduje to ruch powietrza i chłodzenie freza. Kolejnym ważnym czynnikiem jest prawidłowe zamocowanie materiału obrabianego i freza. Obrabiane detale mocujemy na solidnym stole przynajmniej w 2-3 punktach. Należy pamiętać aby wykorzystane ściski nie ograniczały pracy frezarki. Stopa frezarki powinna bez problemu przesuwać się po materiale obrabianym lub po szynach.
    Mocowanie freza. Frezy do frezarek górnowrzecionowych mocuje się w tulejkach zaciskowych dokręcanych nakrętką ( najczęściej jest to średnica 8 mm, żadziej 6 i 12mm).W większości frezarek jest system blokowania wrzeciona, znacznie ułatwiający odkręcanie nakrętki. Frezy kształtowe powinny być wsunięte przynajmniej na głębokość tulejki mocującej, zazwyczaj jest to 15 mm.
Frez z płytką do drewna Globus

Powyższe dane powinny wprowadzić każdego w zagadnienie frezowania drewna frezarkami górnowrzecionowymi. I jeszcze uwaga proszę zapoznać się z instrukcją dołączoną do maszyny. Powinno być tam jasno objaśnione jak nastawiać głębokości frezowania na zderzakach i trzpieniu wskazującym.

Pozdrawiam

Węże poliuretanowe Norres – Sklep Dom Techniczny Wieluń

Dzień dobry
Albowiem większa część ludzi lepiej przyswaja informacje patrząc na obrazki, a nie czytając tekst, opiszę wszystkie graficzne informacje dotyczące przeznaczenia węży technicznych Norres. Będzie to również idealny poradnik po szerokim przeznaczeniu tych węży.

https://domtechniczny24.pl/w%C4%99%C5%BC%C4%99-techniczne-szerokie-spektrum-zastosowa%C5%84.html

Węże techniczne ssawno tłoczące poliuretanowe PU w oplocie.

Znak graficzny przedstawiający użycie węża biorąc pod uwagę 4 istotne grupy wg. przesyłanego medium.
Nowa ikona „medium“ – Teraz odbiorca z łatwością może zrozumieć do jakiego typu medium jest przeznaczony wąż.
Ikona „medium” charakteryzuje media gazowe, płynne, pyły, ciała stałe jak i ciężkie ładunki ścierne. Ta ikona umożliwia użytkownikom błyskawiczny wybór odpowiedniego węża lub systemu, podobnie sprzedawca może w szybki sposób odszukać to co potrzebuje konsument.

Gaz: Wąż przeznaczony się do mediów gazowych.

Pył: Wąż jest odpowiedni do przesyłu pyłów i proszków.

Ciecz: Wąż jest przeznaczony do przesyłu cieczy.

Media ścierne: Wąż jest przystosowany do przesyłu artykułów ściernych, takich jak kruszywa, włókna i granulaty, pelet.

Znak rysunkowy PRE PUR. Ile jest poliuretanu w poliuretanie.


Jak w przypadku wielu surowców i wyrobów gotowych są i tu duże różnice jakościowe.

NORRES stosuje do wielu węży specyficzną mieszaninę ester i eter poliuretanową, nazwano ją jako mieszankę Pre-PUR ze znaczkiem r :).

Te polimery składające się z twardych i miękkich segmentów Pre-PUR® mają w porównaniu do wielu innych tworzyw, mieszanek gum i „prostego“ poliuretanu lepsze cechy. Twarde segmenty Pre-PUR® mają skrajnie wysoką odporność mechaniczną, natomiast miękkie segmenty Pre-PUR® są jednocześnie elastyczne i mają dużą wytrzymałość dynamicznej.

Wykorzystywane przez Norres surowce Pre-PUR® odróżniają węże od wielu dostępnych na rynku:

Węże NORRES Pre-PUR® składa się z specjalnego, wysokiej jakości typu poliuretanu premium ester, eter.
Znacząca czystość używanych surowców i niewielka rozbieżnoć tolerancji zapewniają wysoki pułap jakości.

  • bardzo dobre właściwości mechaniczne
  • niska ścieralność
  • ekstremalnie dobra odporność chemiczna i hydrolityczna
    NORRES Pre-PUR® z radykalnie długim łańcuchem molekularnym (duża masa cząsteczki, krystaliczna struktura i skład). Podczas chemicznego, hydrolitycznego i termicznego procesu podziału łańcuch molekularny ulega skróceniu. Z reguły dłuższe łańcuchy molekularne mają dłuższą żywotność. Długość łańcucha molekularnego jest ważna dla temp. mięknienia węża. Z jednej strony produkty z Pre-PUR® mają ponadprzeciętną wytrzymałość na wysokie temp., z drugiej strony przy niskich temp. Pre-PUR® ma lepszą elastyczność.
  • wyższa odporność chemiczna i hydrolityczna
  • wyższa temperatura mięknienia
  • większa wytrzymałość na temperatury.
  • wyższa wytrzymałość na ciśnienie rozrywające.
  • duży margines bezpieczeństwa
  • dłuższa żywotność
  • lepsza elastycznosc w niskich temp.
  • mniejszy moment zgięcia w niskich temp.
  • mniejsze prawdopodobieństwo pęknięcia w niskcih temperaturach, dzięki większej elastyczności.
    NORRES Pre-PUR® zawiera opracowany razem z naszymi kontrahentami surowców specyficzny stabilizator. Bez tego dodatku węże nie byłyby tak odporne chemicznie, hydrolitycznie i termicznie i szybciej by się zrywały.
  • wyższa odporność chemiczna i hydrolityczna
  • lepsza odporność na utlenianie
  • dłuższa żywotność
  • lepsza odporność na warunki atmosferyczne
    Stosowany przez nas do wielu węży poliuretan eterowy Pre-PUR® w porównaniu do poliuretanu estrowego Pre-PUR® (a także innych poliuretanów estrowych) ma następujące zalety:

Odporność na wnikanie w powierzchnię węża drobnoustrojów. Przede wszystkim podczas długotrwałego kontaktu z ziemią oraz silnymi zabrudzeniami w warunkach korzystnych dla mikroorganizmów. Poliuretan eter ze względu na swoją chemiczną budowę jest długookresowo wytrzymały na mikroby. W naszej ocenie jest to znacznie lepsze rozwiązanie, niż używanie substancji niebezpiecznych dla zdrowia przy poliuretannie estrowym. W każdym poliuretanie estrowym zachodzi ryzyko, że poprzez wypłukanie dodatków zostanie przekroczona wartość graniczna i dodatek przedostanie się na powierzchnię węża i dojdzie do kontaktu z przesyłanym materiałem.

Odporność na hydrolizę, szczególnie w kontakcie z wilgocią przy wysokich temperaturach i w klimacie tropikalnym.
Lepsza odporność chemiczna niż porównywalne poliuretany estrowe.
Wyższa elastyczność w niskich temp. niż poliuretany estrowe, to już pisałem wcześniej.

Przykład odporność:


Nasze wysokiej jakości surowce Pre-PUR® ze swoimi stabilizatorami dają znacznie podwyższoną wytrzymałość a tym samym dłuższą żywotność, niż wiele innych produktów. Właściwym pomiarem jest pomiar hydrolityczny w wodzie o temp. 80°C, gdyż mechanizm chemicznego rozkładu poliester-poliuretan powoduje często rozpad łańcucha poliestrów . Nasz Ester Pre-PUR® w porównaniu do występującego na rynku estru-TPU jest przedstawiony na rys:

Porównanie parametrów mieszanki poliuretanu estrowego Pre-PUR® z termoplastycznym poliuretanem estrowym TPU
Przykład odporność na ścieranie:
Odporność na ścieranie naszego poliuretanu Pre-PUR® jest wg normy ist ok. 2,5 – 5 raza wyższa niż wielu materiałów gumowych i 3-4 raza wyższa niż wiele miękkich PVC (pomiar przy 20°C). W praktyce różnice są jeszcze większe, ze względu na dobrą elastyczność i odbojność poliuretanu Pre-PUR®.

Znak graficzny Ścieranie.

Wysokiej jakości kompozycje PUR i optymalna budowa węża generują w procesie transportu mniejsze tarcie, niż wiele innych węży. Te węże NORRES przeznaczone są do silnie ściernych materiałów. W zestawieniu z wielu węży dostępnych na rynku wyróżniają się:

Wzmocnieniem geometri ścianki w najbardziej narażonych punktach, zwłaszcza na łączeniach.

Poprzez tarcie przesyłanego medium mogą wystąpić wysokie temperatury. Tworzywa termoplastyczne miękną przy podwyższonej temperaturze, dochodzi do spowolnienia przesyłu i tym samym wzrostu tarcia. W warunkach podciśnienia dochodzi, na dodatek do skrócenia osiowego, wewn. wzrostu sfalowania oraz dużego wzrostu ścieralności. Firma NORRES stosuje do oznaczonych w ten sposób węży poliuretanowych mieszanki surowców o wysokiej trwałości na ciepło.

Geometria profilu węża PUR firmy NORRES jest zoptymalizowana, tak że węże są wysoce sztywne osiowo, przy czym są bardzo elastyczne. Mniejszy stopień sfalowania w pracy w podciśnieniu oznacza dłuższą żywotność.
Do tych węży są używane surowce o wysokiej wytrzymałości mechanicznej i ze specyficznymi dodatkami, gwarantującymi bardzo wysoką odporność na ścieranie.
To tyle
Pozdrawiam

Nowinki na składzie grudzień 2021

Nowości w sklepie Dom Techniczny Wieluń.
Rozszerzyłem nasz asortyment o latarki MacTronic. Latarki są pogrupowane w kilka katalogów. Największy to latarki czołowe i tu w ofercie są niedrogie latareczki do 40 złotych np. Lampa czołowa 3×0,2W+4LED L-HL-3PW4L

Firma MacTronic wprowadziła również na rynek nowe latarki taktyczne https://domtechniczny24.pl/latarki-taktyczne.html . Dostępne są 3 wersje, MX-T155 na baterie AA, MX-T160 na baterie CR123, i wersja MX-T250na 2 baterie CR123.


Latarka taktyczna z włącznikiem żelowym M-Force MX-T160. Symbol 160 zdradza ilość lumenów.
Latarka zapakowana jest w ładnym pudełku.
Dołączony uchwyt do szyny Picatinny wykonany jest z lotniczego aluminium. Latarkę dokręca się na 2 śrubki imbusowe – wkrętak imbus jest dołączony do zestawu.


Latarka wygląda masywnie, nie ma zoomu i jeden tryb pracy 100%, tylny wyłącznik jest 2 zakresowy, można włączyć na stałe albo jak trzymamy lekko przyciśnięty włącznik. Natomiast wyłącznik żelowy ma jeden tryb pracy.

Nasunięta klapka na soczewkę trzyma się solidnie, podobnie wymienne filtry. W zestawie są: czerwony, ciemny niebieski i zielony.
Klasa IPx4 oznacza pełną pyłoszczelność a wodoodporność klasy 4 oznacza, że wytrzyma krople wody lecące pod dowolnym kątem, np. wiatr z deszczem. Zasilanie bateria CR123.
Oprócz latarek taktycznych MacTronic produkuje jeszcze, jak napisałem uprzednio latarki czołowe. Ciekawa jest latarka Nomad i latarki z Seri L HMS i L MX należąca do linii M-Force. Ta pierwsza zasilana trzema bateriami AAA, posiada w pełni wodoszczelną obudowę i moc 160 lumenów. Daje jej to wyraźny zasięg do 90 metrów.

Latarka Nomad ma 3 tryby jasności, 2 dodatkowe filtry i diodowe światło czerwone z możliwością nadawania sygnału SOS.


Inną nowością są ściernice trzpieniowe ceramiczne. Wprowadziliśmy nowy wymiar średnica 20mm, długość 25mm, oparty o ziarno z węglika krzemu.